Reducing carbon emissions in Transport, Industrial and

Reducing carbon emissions in mansport, muus

Commercial Refrigeration

Catarina Marques

eurammon Symposium, 26th June 2023

OUTLINE

- Cooling applications
- Transport, Industrial & Commercial Refrigeration (TICR) project scope
- UK TICR scope 1 and 2 emissions initial research
- Future work: benchmarks, roadmaps and training materials
- Net zero refrigeration by 2050:
 - What TICR could look like in 2050
 - How to get there: barriers, enablers and opportunities

COOLING APPLICATIONS

	Thermal com	Thermal comfort			Reme stabl and o	oving heat and e temperature commercial pu	d maintaining es for industrial irposes	Maintaining stable temperatures for food and medicine transport and preservation	
ation	Mobile Air Conditioning	Space Cooling			Indus Refri	strial geration	Commercial Refrigeration	Transport Refrigeration	Domestic Refrigeration
Applic	Cooling in passenger cars, commercial vehicles, buses, trains, planes etc.	Indirect of cooling a air condi fans for comfort in buildir	g Refrigerations of the second		on farms, n food essing iding ne) and maceutical ries product bution es	Used in supermarkets, restaurants and other retail premises, e.g. display cabinets and cold rooms	Movement of goods over land and sea, preserving their safety and quality, and extending shelf life	Safe storage of food and extension of its shelf life	
Technology	Mobile ACs	Heat pumps	Unitary ACs	AC chille	rs	Industrial refrigeration equipment	Commercial refrigeration equipment	Transport refrigeration units (TRUs) including shipping containers	Domestic refrigerators

TICR PROJECT SCOPE

A data driven whole-systems approach to support decarbonisation and innovation strategies across all six sectors

Carbon emissions

Roadmaps

Benchmarks

Training materials

opportunities

REFRIGERATION CARBON EMISSIONS

https://www.gov.uk/government/statistics/digest-of-uk-energy-statistics-dukes-2022

TRANSPORT REFRIGERATION

Cold Chain Federation (2020)

The current size of the fleet in the UK is not

accurately known

- Cold Chain Federation estimated 70,000 TRUs:
 - o 30,000 of trailers
 - 15,000 trucks
 - o 25,000 vans
- CENEX (2021) estimates 100,000

refrigerated vehicles operating within the UK

Survey being carried out in partnership with DfT to estimate total no. of TRUs in the UK

TRANSPORT FOOD DISTRIBUTION

- **Tertiary Distribution**
- Movement from wholesale depots to independent retailers.
- Done with rigid vehicles (18-32 tons)

Refrigerated Transport Sizes:

Depending on the place along Cold value chain, various sizes of vehicles are used:

High Goods Vehicle (HGV): A lorry with a plated weight of 3.5 tonnes or more. This can be rigid (>3.5 <26 tonnes) or Articulated (>26 tonnes)

Light Commercial Vehicle (LCV)/Light Goods Vehicle (LGV)- Vehicles with gross weight of under 3.5 tonnes

Except for the last mile all distribution stages use HGVs

Secondary Distribution

- distribution centre to
- articulated vehicles (32-

TRANSPORT & LOGISTICS STAKEHOLDERS

- **Third Party storage**: Public' cold stores operated by independent third-party logistics providers (for chilled and frozen customers along cold food chain)
- Uses HGV (trailer and rigid trucks) and LCV)
- Retail and Food service: 'Private' cold stores operated by major retailers and food service providers (regional distribution centres and hubs by e.g. Aldi Sud).
 Uses HGV (trailer and rigid trucks) and LCV)
- **Processing and manufacturing**: 'Private' facilities owned manufacturers. Uses HGV (trailer and rigid trucks)
- Farming and Producers: 'Private' facilities on farms associated with the storage of fresh produce after picking.
 mostly HGV (trailer and rigid trucks)
- Specialist warehouses (mostly rigid trucks and LCV)

TRANSPORT EVOLVING BUSINESS MODEL

Changing in consumer preferences towards **online shopping, purchase of local foods, increasing preference for frozen foods** are shaping the future business model. The trend is changing towards:

- Shifting towards online purchase will lead to increase number of LCV on the roads.
- Increased preference for local purchase of food is pushing big retailers towards Local Shops or Convenience Stores.
- Transportation modal shift to rail system and reduced usage of articulated HGV for primary and secondary distribution may be possible soon.
- Use of e-bike for last mile delivery is becoming more pronounced. ASDA is currently on a pilot with Deliveroo

Social media and online searches

2021

Association of Convenience Stores (2021). The Local Shop Report

TRANSPORT EMISSIONS

- **Scope 1 emissions-** Direct emissions from fugitive refrigerants of TRU units.
- Scope 2 emissions Indirect emission from fuel consumption or electricity used to drive TRU unit while on standby.

The total road transport refrigeration emissions within UK is estimated at **2.30 MtCO2e/ year** of estimated **100,000 road transport refrigeration vehicles** currently in use.

COMMERCIAL: RETAIL & COLD STORES

Major energy users within the UK food industry

Retail Refrigeration

Market shares for major retailers in the GB grocery market [Kantar Group, 2023].

- 6,578 supermarket stores (>280m²) in 2010 [Tassou et al.]
- Biggest sector in the agri-food chain (31% of total GVA)
- 10.9 TWh and 4.01 MtCO₂e from 10 major retailers

Cold Stores

Distribution of UK Cold Chain facilities [CCF, 2022].

- CCF members: 453 stores w/ ~40x10⁶ m³ total volume
- Estimated to be worth ~£20 billion to UK economy
- 3.5 TWh of primary energy and 0.46 MtCO₂e emissions

RETAIL REFRIGERATION

Research methodology to estimate energy use and emissions

RETAIL REFRIGERATION

Results suggest a good match for large stores (supermarkets)

- Similar energy consumption figures when large stores (supermarkets) are compared
- Previous studies have highlighted risk of misclassification with VOA dataset for smaller stores
- Scope 1 suggest predominance of central systems, Scope 2 varies widely with carbon factors

COLD STORES

Larger number of stores obtained led to higher REC and emissions

- Greater energy consumption could be explained by larger dataset and refrigerated volume (58x10⁶ m³)
- Higher uncertainty around Scope 1 emissions (equipment type), to be clarified during site surveys
- Scope 2 sensitive to carbon factors, if corrected leads to average of 0.16 MtCO₂e across studies

~0.2% of

INDUSTRIAL: DATA CENTRES

Data centres in the UK

Distribution of UK TP4 CCA data centres [techUK, 2020].

- Running business processes, Government services, telecommunications, transport infrastructures, social networks, and more
- Over 16% of domestic output, 10% of employment and 24% of total UK exports, growing fastest in the G-20
- DCD data suggests 450 colocations and 11,500 enterprise facilities in 2018
- ~70% of the colocation market is located around the M25
- Whole market revenue forecasted at over £280bn in 2023

INDUSTRIAL REFRIGERATION

Food & Drink and Chemicals & Pharmaceutical sectors were reviewed

- Chemical & Pharmaceuticals turnover
- Food & Drink turnover
- Rest of manufacturing turnover

10	Manufacture of food products
10.1	Processing and preserving of meat and production of meat products
10.2	Processing and preserving of fish, crustaceans and molluscs
10.3	Processing and preserving of fruit and vegetables
10.4	Manufacture of vegetable and animal oils and fats
10.5	Manufacture of dairy products
10.6	Manufacture of grain mill products, starches and starch products
10.7	Manufacture of bakery and farinaceous products
10.8	Manufacture of other food products
10.9	Manufacture of prepared animal feeds

11	Manufacture of beverages
11.0	Manufacture of beverages

20	Chemical three-level SIC codes
20.1	Manufacture of basic chemicals, fertilisers and nitrogen compounds, plastics and
	synthetic rubber in primary forms
20.2	Manufacture of pesticides and other agrochemical products
20.3	Manufacture of paints, varnishes and similar coatings, printing ink and mastics
20.4	Manufacture of soap and detergents, cleaning and polishing preparations, perfumes and toilet preparations
20.5	Manufacture of other chemical products
20.6	Manufacture of man-made fibres

21 Pharmaceuticals three-level SIC codes

21.1	Manufacture of basic pharmaceutical products	
21.2	Manufacture of pharmaceutical preparations	

INDUSTRIAL REFRIGERATION

Research methodology to estimate emissions

Evidence and emissions data gathering

- Grey literature
- Academic literature
- Datasets

Review and evaluation of evidence and emissions data

- Consulting style literature review to evaluate relevance of evidence and data sources
- Review of best practises to estimate refrigeration emissions
- Identification of suitable benchmarks

- To be completed by January 2024
 - Site surveys gathering refrigeration emissions data

• Analysis of the site survey data

- Synthesis of evidence and emissions data
- Detailed review of the relevant documentation to identify key content and synthesis of the emissions data from the sources
- Compare and contrast emissions data from the different data sources
- Benchmarking and extrapolation of site survey data to sector level emissions calculations where possible

Note: The main two main databases identified through the literature review was the National Atmospheric Emission Inventory for Scope 1 and Climate Change Agreements and DUKES for Scope 2

REFRIGERATION SECTOR EMISSIONS

Refrigeration scope 1 and 2 emissions represent 2.4 % of the UK's total GHG emissions and nearly 7% of the UK electricity consumption

ROADMAPS FOR INDUSTRY

Model emissions to 2050 for different scenarios

Roadmaps tailored to each sector

CARBON

daking business sens of climate change

working wit

CIOR (S)

Industry engagement

BENCHMARKS

https://www.star-ref.co.uk/news/star-refrigeration-launches-new-energyconsumption-benchmarking-app-for-the-tcsd-industry/

- Enable comparison between sites
- Identify poor, average and good performance

TRAINING

https://netzerorefrigeration.uk/

Transport Industrial Commercial Refrigeration

LOGIN

moving businesses towards net zero

HOME	ABOUT	PARTNERS	NEWS	EVENTS	RESOURCES I	GET INVOLVED
3			K			

Sector Specific Resources, Reports and Downloads

Maintenance or Design? "Is money best spent on energy efficient design or maintenance?" Rob Unsworth and Lisa Pogson explore the issues

NET ZERO REFRIGERATION BY 2050

INTO THE FUTURE

-0--0-

Circular e	conomy	Urban farming			
Whole system	Integration of heating and	cooling	Increas	Increased demand	
understanding Heat sharing	More efficient refrigerants and systems	Benchmar	ks Transpo	ort emissions increase	
More domestic	Data centres Demand-side re		de response	Equality	
produced tood	What could the Transpor	rt, Industrie	al and		
Better monitoring,	Commercial Refrigeratio	n look like	e in 2050 if	Green cities	
measuring & reporting	are to meet our net zero	targets?	Cooling	2	
Importance of skills & training	New policy standards & incentives Carbon pricir		becom	becomes priority	
Digital heat			Carbon pricing?		
Efficient appliances	Natural refrigerants	Natural refrigerants		Decarbonising the grid	
Changing behaviours expectations	and Optimisation of industrial processes	End of F-gas	Less supermarkets	s, more cold stores	

Affordable technology innovation High temperature heat pumps

Increase understanding of planning

Behaviours of drivers

Training – penalty based and incentive based

Innovation

Systems free of F gases Lack of data

Focus on the bigger players

Big data, Al, Internet of Things

What would it take to get there? What are the barriers, opportunities and enablers? Could we get there by 2030?

Yes but start now!

Air quality regulation

responsibility & ownership

Importance of system

Safety

Voluntary agreements

F-gas log (online?) made public

Legislation

Carrot and stick approach

End of life

Data transparency Ban for new equipments

EU policy

Integrate heating and cooling in supermarkets

Refrigeration wide

performance standards

Better marketing for innovation

Skills

Challenge of electrification for

Energy

long distance transport

Lack of training and knowledge – need to incentivize management

> Heating & cooling as a service

Hydrogen

Waste heat recovery

Need for optimal energy modelling

Real time monitoring

TRANSPORT REFRIGERATION

Barriers

- Multiple challenges beyond GHG emissions such as air quality i.e., particulates and NOX exposure

- Lack of regulations in the transport refrigeration sector / associated political and financial costs of introducing regulation
- The UK is influenced by EU policies, in particularly HGVs imported from the EU

Electrification is challenging for long-distance logistics due to weight restrictions on vehicles
Considerations relating to switching to natural refrigerants.

- Incorrect driver behaviour

- Small independent companies (man and a van) have a small profit margin and generally use second hand vehicles and have limited resources Vs.

Opportunities

 Improving air quality, enabled by regulation similar to clean air zone

- Adopting a carrot and stick approach to regulation Focus on big market players to maximise impact.

Potential for servitization-based business models & rental options to alleviate the capital investment
Creating more affordable technologies and funding for transport innovation in the UK

-- Driver's behaviour: Providing better training and automated systems to optimize engine operation

- Hydrogen for long haul vehicles – not as heavy as added batteries and can power refrigeration systems.

- Switch to natural refrigerants

COMMERCIAL REFRIGERATION

Barriers

- Safety concerns
- Lack of training and knowledge
- Competition between retailers
- Cost driven market with low margins
- Behaviour related to COVID-19 and touching chiller doors in supermarkets
- Information sensitivity
- Lack of data
- Prevalence of less efficient equipment in convenience stores and small independent businesses
- More difficult to communicate with smaller retailers
- Lack of incentives to change
- Other priorities
- Cyber security

Vs.

Opportunities

- Solve cost of living crisis delivering an essential service
- Visibility of the industry
- Integration of heating and cooling in supermarkets
- Increasing priority of cooling globally (COP 28)
 Transitioning to low-carbon business models through online operations
 Leveraging big data
- Adopting IoT and AI
 Embracing flexibility and local energy generation
 Facilitating EV charging at supermarkets
 Learning from neighbouring industries and adopting best practices can contribute to sustainable development

INDUSTRIAL REFRIGERATION

Barriers

- Lack of skills and understanding within the industry
- Absence of responsibility and ownership of refrigeration systems performance, leading to different parties having different incentives
 Over-specification of refrigeration
- requirements due to long supply chains - Inadequate energy modelling programs that don't prioritize optimal efficiency during the
- initial design phase
- Lack of monitoring and a tick-box mentality toward maintenance and continuous improvements
- Insufficient incentives for day-to-day improvements and addressing emissions

Opportunities

- Training programs to enhance knowledge in designing, specifying, maintaining, and operating industrial refrigeration sites
- Establishing a culture of responsibility and ownership within the industry, drawing parallels with the transformation seen in health and safety practices
- Energy efficiency measures can save money, improve processes, and reduce emissions
- Improved energy modelling software for more accurate and efficient design

ENABLERS TO NET ZERO REFRIGERATION

THE ROUTE TO NET ZERO REFRIGERATION

- Training decisionmakers, policymakers, & engineers
- Monitoring and real-time data of energy can enable instantaneous pricing, demand-side response, grid management, and variable pricing
- Marketing strategies can help promote both existing & new technologies
- Cooling and heating as a service business models
- Digital twin technology for maintenance and performance monitoring

Penalty-based and incentive-based:

শ্ব

Legislation

2050

- More stringent energy performance targets, labelling & air quality
- Supporting affordable technology and innovation through incentives / rewarding proportional progress rather than minimum thresholds
- Data availability and transparency
- F-gases: recovering and accounting

TICR PARTNERS

Reducing carbon emissions in Transport, Industrial and

Commercial Refrigeration

Contact:

Dr. Catarina Marques | London South Bank University | London | United Kingdom

E-Mail: catarina.marques@lsbu.ac.uk

