Further uptake of flammable refrigerants, especially those of safety class A3, for various applications

Carsten Hoch, TÜV SÜD Industrie Service GmbH

eurammon Symposium, 2023-06-27

Consequences resulting from EU regulatory requirements

Major obligations from existing EU F-Gas Regulation No. 67/20

- Phase down of HFC refrigerants until 223
- ublished Prohibition for placing cert Reduces using HFC refrærate r the market
- Regular leak check by certified person all (C) dupment using HFC refrigerants, + provision of leakage detection by spece (for systems with higher charges)
- Reporting for ma *importers* Result:

The use of HFC refrigerants of safety class A1 ("non-flammable") is dramatically limited.

EU Standardization Request on Flammable Refrigerants

Standardization Request M/555 - Outcome

- Technical Specifications for the safe installation of equipment using flammable refrigerants (in particular of safety class A3)
 - → in view of ensuring safety during installation and operation (operation includes servicing and decommissioning)
 - → extending charge size limits and describing associated risk mitigation measures (considering the "whole lifetime")
 - \rightarrow specifications for rooms/places in which equipment is installed

Results:

- CEN/TS 17606:2021 Installation of refrigeration, air conditioning and heat pump equipment containing flammable refrigerants, complementing existing standards
- CEN/TS 17607:2021 Operation, servicing, maintenance, repair and decommissioning of refrigeration, air conditioning and heat pump equipment containing flammable refrigerants, complementing existing standards

EU Standardization Request on Flammable Refrigerants

Standardization Request M/555 – Outcome: CEN/TS 17606 & CEN/TS 17607

 \rightarrow Does this outcome satisfy the needs of the evolving market?

- No the Technical Specifications are only one step.
- The "major part" of the needed changes in standards is part of the work program of several TC's:
 - →CEN/TC 182: EN 378 series of standards Full Revision

Updates of EN 378 are to be started this year (formal start of work item)

 \rightarrow CEN/TC 413: Development of a new standard EN 17893 for

Thermal Road Vehicles - Safety Standard for temperature-controlled systems using flammable refrigerants for the transport of goods - Requirements and risk analysis process

→CENELEC/TC 61: New editions / amendments of the EN IEC 60335-2-40 & -2-89 standards on "air-conditioners & heat pumps" and "commercial refrigeration appliances"

Focus on EN 378 series of standards – discussion on the following topics

- EN 378-1: new structure and remarkable changes concerning
 - refrigerant charge limits
 - additional options to qualify refrigerating systems using class A3 refrigerant for several applications / location classifications
- EN 378-2: consideration of the following new aspects
 - evaluation of vibration load, especially for refrigerant piping
 - requirements for integral ventilation for specific systems / appliances
 - requirements for leak detection initiating specific safety measures
- EN 378-3: reconsidering aspects for installation sites, mainly in the occupied space and synchronization between EN 378 series & EN 14624 on requirements for leak detectors

Focus on EN 378 series of standards – the most challenging details

- EN 378-1: refrigerant charge limits
 - additional options to qualify refrigerating systems using class A3 refrigerant for several applications / location classifications with the aim of allowing higher charge limits – which additional measures shall be taken?
 - strictly related to individual types of appliances / refrigerating systems
- EN 378-2: consideration of vibration load and similar operational loads
 - enhanced tightness / improved tightness
 - "durably technically tight" systems

Summary:

the manufacturer shall draw up a risk assessment and consider all relevant aspects.

The manufacturer shall draw up a risk assessment and consider all relevant aspects details

→ this is needed anyway for most types of refrigerating systems

- This is required by most of the for refrigerating systems relevant legislations in the EU,
 e. g. according to following directives:
 Machinery Directive 2006/42/EC
 Pressure Equipment Directive 2014/68/EU
- Safety standards can support the manufacturers in this task, but they cannot replace the Risk assessment process to be executed by the manufacturer

Focus on EN 60335-2-40 – the most challenging details

- New Version of IEC 60335-2-40 (ed. 7) published in May 2022
 - additional options to qualify refrigerating systems using class A3 refrigerant implemented
 - related to clauses 22.112 / .115 / .116 / .118 / .121 / .122 / .125 / .132 in conjunction with Annexes BB / DD / EE / FF / GG / HH / LL / MM / PP / QQ
- especially Annex GG in focus →new version amounts to 33 pages
 →not easy to be understood in overall context.
- The topic "enhanced tightness" is partly covered, but only suitable for split units.

Summary:

the manufacturer shall evaluate the new standard requirements, if they are helpful or not for the specific product inquestion.

Examples for standards described the risk assessment for specific types of refrigerating systems

- ISO 20854:2019 Thermal containers Safety standard for refrigerating systems using flammable refrigerants — Requirements for design and operation
 was the first new standard developed for a specific type of refrigerating systems
 - and to include a chapter for description of the risk assessment approach
- FprEN 17893:2023 Thermal Road Vehicles Safety Standard for temperature-controlled systems using flammable refrigerants for the transport of goods - Requirements and risk analysis process
 - under development (final steps) in CEN/TC413 WG1
 - mentioned in the Final Report of CEN/TC182 WG12
- ...and more standards expected to be developed / published

Remarks from a technical point of view

- The key aspect for a successful application of flammable refrigerants are the tightness & durability of refrigerant circuits
- Corresponding requirements are only partly incorporated in EN 378-2 / IEC 60335-2-40
- One possible approach is:

"durably technically tight" as described in EN 1127-1 Annex B

- Advantages: a release of refrigerant is not to be expected, or the effects of a release are "very small" to "negligible".
- Today's status: not yet "State of the Art", but an option for the future!
- One core topic: Competence of personnel for safe use of flammable refrigerants

Thank you for your attention!

Questions? Questions?

eurammon e. V. is always available as a sparring partner for questions on refrigeration with natural refrigerants.

Contact:

Dr. Alexander Schmeink | Lyoner Straße 18 | 60528 Frankfurt | Germany

Phone: +49 (0)69 6603-1277 | E-Mail: alexander.schmeink@eurammon.com

