PFAS Restriction Proposal - focus on fluorinated gases

Thijs de Kort NL Project coordinator UPFAS restriction RIVM – Netherlands National Institute for Public Health and the Environment

und Arbeitsmedizin

With thanks to Audun Heggelund, Norwegian Environment Agency

Norwegian Environment Agency

Ministry of Environmer of Denmark Environmental Protection Agency

Restriction proposal - content

- REACH = Registration, Evaluation, Authorisation and restriction of CHemicals
- Restriction proposal:
 - ✓ Chemical identity
 - ✓ Hazards, risks, effects
 - ✓ Applications
 - ✓ Availability of alternatives
 - ✓ Socio-economic analysis impact assessment
 - ✓ Restriction entry

«Forever chemicals»

- All PFASs in scope of this restriction proposal are either persistent themselves or degrade to other persistent PFASs
- Persistence due to strength of the carbon-fluorine bond
- Applies also for fluorinated gases that are PFAS

Concerns

Properties

- Very high persistence
- Long-range transport potential
- Mobility ٠
- Accumulation in plants
- **Bioaccumulation potential** ٠
- (Eco)toxicity
- Endocrine activity

Concerns related to combinations of properties

- High potential for ubiguitous, increasing and irreversible exposures of the environment and humans:
- Difficulty to decontaminate raw water for drinking water, low effectiveness of end-of-pipe RMMs and difficulty to treat contaminated sites:
- High potential for human exposure via food and drinking water;
- Potential for intergenerational effects and delay of effects;
- Potential for causing serious effects although those would not be ٠ observed in standard tests:
- Estimation of future exposure levels and safe concentration limits is highly uncertain;
- Global warming potential.

Norwegian Environment Agency

Ministry of Environme

Justification for EU-wide measure

- PFASs manufactured, imported and used in EU
- Global market with growing volumes (e.g., fluorinated gases and fluoropolymers)
- Large variety of emission sources (across life cycle stages)
- Ubiquitous presence and increasing levels in environment
- No (cost) efficient remediation possible
- PFASs are mobile and cross borders
- EU internal market: level playing field

EU-wide risk reduction measures: Implement control efficiently and uniformly

gian nment y

Grouping approach

- Grouping based on two aspects:

ational Institute for Public Healt

i) Chemical structure (i.e. in line with OECD 2021 PFAS definition)ii) Persistence

- Equivalent hazards and risks are covered
- Justified to avoid regrettable substitution
- Prevention of future exposures of PFAS which are not currently in use.

Restriction process – next steps

Public Consultation, 22 March – 25 September 2023

ECHA webinar 5 April

https://www.youtube.com/watch?v=JzZRtmaJeoQ

ECHA's UPFAS consultation

https://echa.europa.eu/nl/restrictions-under-consideration/-/substance-rev/72301/term

Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

Norwegian Environment Agency

7

Sectors/uses of PFASs

- Industrial processes
- Firefighting foams
- TULAC
- Food contact materials (incl. packaging)
- Metal plating/metal products
- Consumer mixtures
- Ski wax
- Transport

- Applications of fluorinated gases
- Electronics and semiconductors
- Energy sector
- Construction products
- Lubricants
- Petroleum and mining
- Medical devices
- Cosmetics
- Other uses

National Institute for Public Health nd the Environment try of Health, Welfare and Spor

Ministry of Environmen of Denmark

PFAS restriction – fluorinated gases

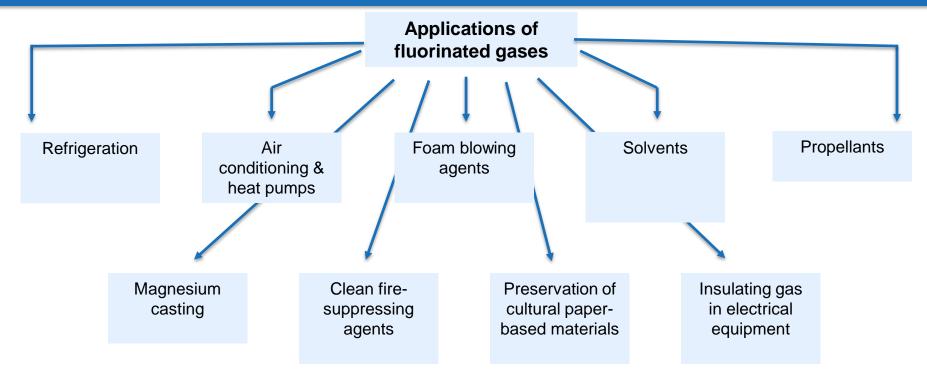
Photo: Audun Heggelund

Most F-gases are within the scope of the **PFAS** restriction

(out of scope: e.g., HFC-23, HFC-32, HFC-152a)

Assessed in restriction proposal:

- Applications divided in 9 main groups -
- Alternatives (availability) -
- Risks to human health and environment -
- Socio-economic aspects (costs and benefits) -

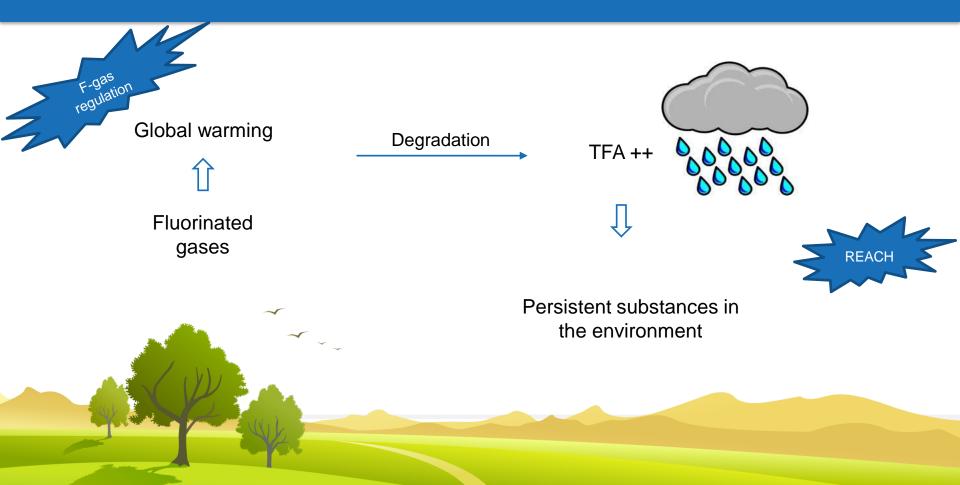

und Arheitsmediziz

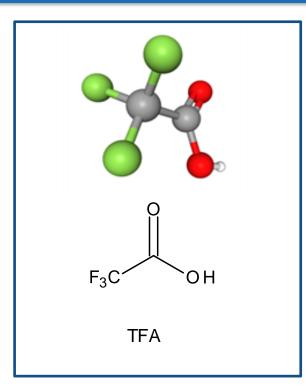
Norwegian Environment Agency

Ministry of Environmen of Denmark

Fluorinated gases: applications

Annual emissions of fluorinated gases in the EU/EEA: 39 000 tonnes





Norwegian Environment Agency Ministry of Environment of Denmark Environmental Protection Agency

Fluorinated gases – atmospheric degradation and concerns

Trifluoroacetic acid - TFA

- Fully fluorinated version of acetic acid
- Colorless liquid, boiling point 72 °C
- Relatively strong carboxylic acid
- Used in various industrial applications
- Harmonized Classification: H412 harmful to aquatic life with long lasting effects (Aquatic Chronic 3)
- Microalgae Raphidocelis subcapitata most sensitive organism i freshwater
- Persistent in the environment mobile in water
 → vPvM
- Difficult to remove in purification

Norwegian Environment Agency

Sources of TFA in the environment¹

- More than 10 000 different PFAS 1 may have natural sources
- Potentially natural sources in the ocean (200 ng/L) deep-sea vents²
- Industrial uses of TFA (100 1000 t/y)
- Degradation of fluorinated gases from e.g. refrigerants
- Degradation of pharmaceuticals, biocides and plant protection products
- Degradation of other substances containing C-CF₃
- Incineration of PFAS, including fluoropolymers

2. Frank et al. (2002), Environmental Science & Technology, 36, 12-15.

^{1.} Freeling & Björnsdotter (2023), Current Opinion in Green and Sustainable Chemistry, 41, 100807.

F-gas regulation

- Regulation (EU) No 517/2014 (F-gas regulation) currently under revision
- Adresses global warming from F-gases
- Gradual phase-down of the F-gases' total contribution to global warming
- Measures volumes in CO₂-equivalents based on the individual gases' GWP value
- Does not address persistent substances in the environment
- Contains list of prohibitions on specific applications of HFCs and PFCs, often over a given GWP

Restriction Options (ROs) assessed

 $\mathsf{R}\mathsf{O}$

Full ban of all uses

Transition period: 18 months

Ban with use-specific derogations

- Transition period: 18 months
- Duration of derogation:
 - 5 years (based on set criteria relating to alternatives)
 - 12 years (based on set criteria relating to alternatives)
 - Time-unlimited derogations (specifically justified)

Norwegian Environment Agency

Approach to derogations

5 years (+ 18 month transition period)

- Non-existence of feasible alternatives on market at EiF, but alternatives already identified
- Alternatives not available in sufficient quantities
- Alternative cannot be implemented by company before transition period ends

12 years (+ 18 month transition period)

- No feasible alternatives identified so far
- Certification/approval of alternative cannot be achieved within 5-year derogation period

Norwegian Environment

Agency

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

16

Conclusions

- RO1: Could be proportional in medium and long-term
 - Likely progressive increase in societal costs of continued use, which will eventually outweigh societal costs of the restriction option
- RO2: Also proportional, and most appropriate
 - Balancing trade-offs between short-term and long-term

Cost of restriction

VS

Societal costs of continued use

Consultation – more information needed

- Information needed on alternatives
- Users of fluorinated gases may focus on difficulty to transition to non-PFAS alternatives
 - Info needed on availability of alternatives, including necessary transitioning time to alternatives (steps and timelines)
- Public RCOM documents show arguments against alternatives
 - E.g., RCOM part 15, 4339: CO₂ and NH₃ refrigerant cannot be used onboard ships
- Substantiated information and comments can be taken into account during scientific scrutiny by RAC and SEAC

Consultation – where to go?

- Website of ECHA : <u>Submitted restrictions under consideration -</u> <u>ECHA (europa.eu)</u>
 - Dossier incl. annexes
 - RCOM documents
 - Access to consultation
- Specific questions for consultation:

https://echa.europa.eu/documents/10162/aea5537d-b698-3b75-4b67-0cadd0fd11d3

Summary and next steps

- Restriction for PFAS, including fluorinated gases, proposed
- Information on alternatives for fluorinated gases is important
- Public Consultation 22 March 25 September 2023

