

HERMETIC-Company

- CO2 as natural refrigerant short introduction
- Cooling of server room with CO2 solution
- Finding the right pumping solution
- Summary

- CO2 as natural refrigerant short introduction
- Cooling of server room with CO2 solution
- Finding the right pumping solution
- Summary

Market Outlook – Expectations for different refrigerants

Largest growth for CO2 (appr. 7%/per year until 2024)

CO2 – As natural refrigerant

Properties CO2:

R744

Global Warming Potential (GWP) = ²

■ Density (0°C) = 927.4 kg/m3

■ Spec. heat(0°C) = 2.542 kJ/kgK

Vapor pressure (0°C) = 3.485 Mpa / 500 psia

Advantages	Disadvantages
+ Low gobal warming potential	- High pressure installations
+ Not hazardeous to product in case of contact	- Expensive installation
+ Low pressure/compression ratio	 Operating conditions can be close to critical (triple) point
+ Low cost	

Typical installations of CO2

- CO2 as natural refrigerant short introduction
- Cooling of server room with CO2 solution
- Finding the right pumping solution
- Summary

Cooling server rooms with CO2

Main advantages of CO2

- Less space
- Lower volumetric flow (12m3/h) instaead of 100m3/h water / 5000 m3/h air
- No water demages to server

Requirements

Nominal pressure: 75 bars

Operating temperature: +15°C

Delivery rate: 12 m3/h

Pumping head: 45 m

Pump solution

Pump type: CAM 30/3+0

Nominal pressure: **PN75**

Motor output: 3kW

Position: Vertical

Advantages:

- CO2 leackage rate less than 1g/year at 64bar
- Reliability
- Low maintenance

Heat exchanger (CARRIER)

- CO2 as natural refrigerant short introduction
- Cooling of server room with CO2 solution
- Finding the right pumping solution
- Summary

Centrifugal pump types

Centrifugal Pumps with double mechanical seal

Magnetic coupled pumps

Canned Motor Pumps

Comparison of pump types – for natural refrigerants as CO2

	Pump with double mechanical seal	Magnetic coupled pump	Canned motor pump
Benefits	 + Initial cost low (without installation) + Cheap wet end, big selection + Lowest heat input to liquid (no motor cooling) 	+ External motor is cheap+ Cheap change of motor unit+ Increased safety	 + Maximum safety (secondary containment) + Lowest LCC + Compactness + Easiest installation + Lowest maintenance cost
Dis- advantages	 Highest risk pump for leaks Highest maintenance cost and efforts High maintenance cycles Largest footprint High installation cost and efforts 	 Initial cost and lifecycle costs are between seal and canned motor pumps Maintenance intervall range between seal and CMP as well Performance drop through many interfaces Liquid cooling adds heat to the process 	 Highest cost for pump Losses through can Liquid cooling adds heat to the process

Error analysis

Figure 5: Service lifes of varius types of centrifugal pumps

SMP canned motor pump
MKP magnetically coupled pump
GLRD mechanical seal pump

- Mechanical seals often cause failure (52 %) of conventional centrifugal pumps.
- Damage caused by roller bearings and couplings is considerably lower.

- Service life of canned motor
- CMP has considerable advantages over magnetically coupled pumps (60 %) and conventional pumps (40 %).

Canned motor pump in operation

CAMh / CAMhk - Solution for CO2

- Normal suction design
- Multistage design up to 6 stages
- Options: SiC30 or graphite bearings

Properties:

■ Capacity: max. 14 m3/h

■ Head: max. 85 m

Op. temperature: -50 °C to +15 °C

Pressure rating: PN52

Test pressure: 78 bar

Options:

- Drain
- Manometer bores

Single stage pumps with deviation line

What to look for at CO2 pumped systems

- CO2 as natural refrigerant short introduction
- Cooling of server room with CO2 solution
- Finding the right pumping solution
- Summary

Summary

CO2 – as natural refrigerant:

- Low global warming potential
- Low pressure/compression ratio
- High pressure installation

CO2 for server room cooling:

- Less space
- Not risk for water damages

Advantages of canned motor pumps with CO2:

- Low CO2 leackage rate
- Reliability
- Low maintenance

CO2 Supercritical

h Qmay ad
h
h
h
Qmax ad
250,0
190,0
145.00
12,10
7,00
425.0
d 120.0
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

Contact

HERMETIC-Pumpen GmbH

Gewerbestrasse 51
79194 Gundelfingen
Germany
phone +49-761-5830-0
http://www.hermetic-pumpen.com

Christoph Galli
Sales Engineer Refrigeration
phone +49-761-5830-411
galli.christoph@hermetic-pumpen.com

Additional information to CO2:

Whitepaper - CO2

Information about natural refrigerant

