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Programme and Presentations

8:30 — 8:40 Welcome and Introduction of the Award Winners
Monika Witt - TH. WITT Kaltemaschinenfabrik GmbH, eurammon Vice Chair

8:40 — 9:10 Winner 1st place - Benjamin Zuhlsdorf DTU Technical University of Denmark
“High-performance heat pump systems - Enhancing performance and range
of heat pump systems for industry and district heating”

9:10 — 9:40 Winner 2nd place - Maaike Leichsenring Delft University of Technology, Netherlands
“Flow visualization of downward condensing ammonia in a gasketed plate heat exchanger”

9:40 -10:10 Winner 3rd place - Fabio Giunta KTH — Royal Institute of Technology, Sweden
“Techno-economic assessment of CO, refrigeration systems with geothermal integration,
a field measurements and modelling analysis”

10:10 — 10:30 Q&A session and closing remarks
Andrew Stockman, Managing Director for Europe and the Middle East at EVAPCO Europe
Group and eurammon executive board

eurammgn 2




The future is Natural!

The smartest decision is to leapfrog other refrigerant options and turn to the natural choices...
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eurammon Natural Refrigeration Award 2020

High-performance heat pump systems

Enhancing performance and range of heat pump systems for
Industry and district heating

Webinar, October 9, 2020 — Benjamin Zuhlsdorf, Technical University of Denmark
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Agenda

« Zeotropic working fluids in heat pumps

— Motivation and potential

— Screening procedure

— Optimization of cycle and working fluid

— Summary and outlook
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ThermCyc
Efficient use of low-temperature heat sources

March 2014 — February 2019
Hypothesis:

Low-temperature heat sources represent a favorable energy source.

There is a great potential to enhance their utilization by:
- Novel cycle layouts
- Utilization of working fluid mixtures
- Improved component design

oRC [ Power »

Temperature
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Motivation and potential
Use of zeotropic working fluid mixtures
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Motivation and potential DTU
Use of zeotropic working fluid mixtures MelioLocicaL S8
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Motivation and potential DTU
Use of zeotropic working fluid mixtures DetimoLocicAL S
INSTITUTE
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Motivation and potential
Use of zeotropic working fluid mixtures

|
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Motivation and potential DTU
Use of zeotropic working fluid mixtures PeimoLocicaL S
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Motivation and potential
Relating exergy destruction and COP

50°C—»75°C
25°C +—50°C

14

30 % DME /
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Screening procedure
Case study: Data Center to District heating
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Screening procedure
Case study: Data Center to District heating
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Screening procedure

. . . ] o
How to find promising mixtures? Pliolocical
INSTITUTE
Pre-Screening Screening Post-Screening
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Composition of Component 2, kg/kg
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Screening procedure DTU
Case study: Data Center to District heating PeimoLocicaL S
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Screening procedure

Case study: Data Center to District heating

50°C—»75°C
25°C +—50°C

e Pure fluids:

— COP around 4.5

— Lower c,, mainly due to lower TCI

o Mixtures:

— Higher TCI

TCI

spec
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Screening procedure
Underlying assumptions for comparisons
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—  Simple design approach for each fluid 2 |
—  Requires design experience w 1000 ' ' .
— Yields economically fair results S 7507 ] M M ]
. S
b) Fixed HX Investment ; 500
— Total investment in HX area fixed to result from ammonia in a. 2507
Z sl
a) 0
—  Distribution to source/sink of area optimized 6\0@ q& bﬂ» 6‘) (,p(’) 0@0 0@0 Q\Q&
—  Results were biased by choice of area/investment NS ‘i; ’f’\ IQ»’ %35 ofo Ny \%OQ’ \$0Q
.. \
c) Optimized area w.r.t. NPV CO }f\(\ °l \3\6‘\6 qff\ \‘JQ
Q° \Y 2>
— Investment in HX area optimized w.r.t. NPV rLOQ \6;\ of ?‘OIGQ@iQ fo Y
—  Numerically more demanding 0 oo 95

High-performance heat pump systems
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Optimization of cycle and working fluid
Standard cycle
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Optimization of cycle and working fluid
Standard cycle D eHNdLOGICAL
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Optimization of cycle and working fluid
Standard cycle D eHNdLOGICAL
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Optimization of cycle and working fluid

Standard cycle
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Optimization of cycle and working fluid
Internal Heat Exchanger cycle

TECHNOLOGICAL
INSTITUTE

HE

40 °C —» /70 °C
10 °C +— 20 °C

10 % Propane / 90 % Butane

___________________ Heat Sink COP = 4.88, VHC = 1763 kJ/m°
Sink In ANNADTNAN Sink Out> 100pevap =1.79 bar, pcond = 8.59 bar
Sub- Desuper—i | | '
 Cooler CONMENET  egter O
5
=
S
5,
o,
Throttling g
Valve =
: : S I
@ Pl e 0 20 40 60 80 100
Heat Source Transferred Energy per Heat Supply, %
e U rO m m @ n High-performance heat pump systems

p..'§




Optimization of cycle and working fluid
Internal Heat Exchanger cycle D cHNoLoGICAL
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Optimization of cycle and working fluid
Internal Heat Exchanger cycle
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Optimization of cycle and working fluid

Overview results

Std Cycle -5 K SH
J — — —Std Cycle -0K SH

I[HX Cycle - 5 K SH

— — —IHX Cycle - 0 K SH
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Zeotropic working fluids in heat pumps
Summary and outlook

Heat pump applications often show temperature glides (contrary to refrigeration systems)

Conclusions:
— Large potential for zeotropic working fluid mixtures
¢+ COPincreases >30 %
¢+ Higher COP can compensate additional investment
—  Temperature glide matching possible
¢+  Glide match on source side has dominating impact
¢+ Further influence from e.g., compression & expansion
—  Screening required for identifying promising fluids
—  Cycle layout
¢+ Considerable increases possible using standard cycle

+  Further improvements obtainable by cycle optimization (e.g., IHX, reduction of superheating, ..

Challenges
—  Design procedure following the screening procedure
—  Experimental validation of these procedures

e U rO m m @ n High-performance heat pump systems
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Thank you for your attention!

Benjamin Zuhlsdorf
? Consultant

DANISH Energy and Climate -
TECHNOLOGICAL  +45 72201258 ) o
INSTITUTE bez@teknologisk.dk & |
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Flow visualization of downward condensing
ammonia inside a gasketed plate heat exchanger
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Content

(\) Introduction

() Experimental setup

() Flow visualization experiments

(\ ) Data analysis and evaluation

() Conclusions & Recommendations
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4 Analysis
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dle o ¢, @
\ -

_%__ _/ * Zero GWP & ODP
* High availability

@

Plate Heat Exchanger
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Introduction
Plate heat exchangers (PHES)

Benefits
» Favourable heat transfer

coefficients
« Compactness
« Design flexibility

* Thermal effectiveness

Challenge

« Two-phase behaviour
not yet fully understood

* QOver- and underestimating
heat transfer and pressure
drop correlations

Ay
Ity de Sige

Expected
Flow patterns influence the performance

Better predictions of flow patterns enhance the accuracy
of performance calculations
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{ Analysis

[, Conclusions
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Introduction -
Flow patterns b setwp

{, Experiments

{, Analysis
Geometric configuration 4 main flow patterns Occurring flow pattern in the
of vapor and liquid PHE generally unknown G Conclusions
Bubbly Slug Churn Film
| Liquid
[ Vapor
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Introduction ——
Research question b setup

¢ Experiments

Scientific knowledge gap
No information is available on flow patterns of
condensing ammonia in corrugated PHE's

{ Analysis

(s Conclusions

aes'®"
\\®
Lo
Main research question
'Which flow patterns are dominant inside the PHE condenser
and how do they relate to its performance?’

Approach
Performing flow visualization experiments

and data analysis @

Safety Glasses
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Experimental setup p—

Test section & setup

Evaporator () hBIl! merl§we
Separator

Recuperator

{, Experiments

({ Analysis
a GPHE High Speed Camera

(test section) .
L {, Conclusions

Expansion Valve

Water

cold
~J Expansion (Valve)

ALl

6.0 kW

Water Pump

P: Pressure sensor
T: Temperature sensor
F: Flow meter

D: Density sensor Buffer Tank

— » Working Fluid ' 0
——» Hot water After cooler

— Cold water

Process Pump Water Pump
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Experimental setup fp—

Test section & setup
() B]ueris

harnessing the ocean’s power

{, Analysis
Visualization section PHE \

- Plate heat exchanger — Visualization plate & Conclusions

& Experiments
e

* LED illumination

» 3000 fps camera

Water ammonia
(cold)
100W small scale setup
 Organic Rankine Cycle —_—
» Pure ammonia LED
» QOTEC purposes -

Similar components to

Refrigeration cycle K High speed camera/
A\ 4
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Experimental setup b itraducon
Material selection & setup

{, Experiments

{, Analysis

« Chemical resistance charts Requirements visualization plate l Glass | | PS / PMMA | A
» Actual chemical resistance : ‘ ;
conceing > \GssSy ©  X

Chemical resistance tests High mechanical performance X X vV
« Transparent materials
* Liquid ammonia
* Four days Transparent v v V||V
Easy to machine X v VvV
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Experimental setup I
Final setup  setup

{, Experiments

Top layer

{, Analysis

{, Conclusions

Base plate

PS

PMMA

8 B, A 4
eurammgn 4 L. s ' TUDelft 9/22
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Experimental setup g roducton
Final setup & setup

{, Experiments
{, Analysis

{ Conclusions

x
TUDelft 10/22

‘Flow visualization of downward condensing ammonia in a Gasketed Plate Heat Exchanger’




' - e -
e

A

r 5
r - :
"4 - ~

- 4 _.’;. - -

Visualization experiments
Test conditions

‘ v




Visualization experiments p—

iti { Setu
Test conditions tup
Varying parameters G, x & Experiments
{, Analysis
Vapor q::la"ty Mass flux {, Conclusions
__my ) ;
e my+my, [ ] = —ma [kgm—ZS—l]

'Achannel
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Visualization experiments

g {, Setup
Test conditions
Varying parameters G, x & Experiments
100 X i {, Analysis
® G=64[kgm?s’] , ,
@ ® G-=81[kgm3s™] { Conclusions
90 r .0 & & 2.4
G =+/-90 [kgm™s™']
a8 | %% ¢ o
[ ]
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Visualization experiments:= -
Flow path & flow pattern N b setup
f 1 Top window ' indow | ) Bottom indw
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Visualization experiments

Flow path & flow pattern s
Partial film flow i { Experiments

: £, Analysis
{, Conclusions
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Visualization experiments
Influence of G b setup

{, Experiments
(, Analysis

(s Conclusions

‘Dry zone’

Partial film flow
rammgn fuDelft 1522
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Visualization experiments
Influence of x X =03[-] b setup

{, Experiments

G =43 [kgm2s71] G =64 [kgm2s71] G =81 [kgm *s™"]

“ - _ g (, Analysis
! ,'_ ! J Tk 4
7 .,

Conclusions

L

Partial film flow Partial film flow Film flow
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Data analysis
Heat transfer vs. flow pattern
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Data analysis
Flow pattern maps (FPMs)

FPMs:
 Prediction tools
» Describe which flow pattern is expected

General FPM by Tao et al. (2018):

» vertical downward PHESs
 Mainly air-water

 Expected applicable for ammonia
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Data analysis
Flow pattern maps (FPMs)

FPMs:
 Prediction tools
» Describe which flow pattern is expected

General FPM by Tao et al. (2018):

» vertical downward PHESs
 Mainly air-water

 Expected applicable for ammonia

Proposed new FPM
* Downward condensing ammonia
» PHEs, current geometry

Can be used to optimize accuracy of FPM
by Tao et al. (2018)
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4, Introduction

Conclusions & recommendations

/, Experiments

Main research question
'Which flow patterns are dominant inside the PHE condenser
and how do they relate to its performance?’
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Objectives

In relation to supermarkets’ CO: refrigeration systems integrated with geothermal storage

« Assess the heat recovery control strategy

« Evaluate the efficiency of the heat recovery system

« Assess the economic savings related to the geothermal storage

« ldentify the most important parameters affecting the cost-effectiveness

e Suggest relevant future work

Introduction Field Measurements Techno-economic Assessment Conclusions
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these systems the heat recovered can cover both tap water and space heating demand. The heat is N \ =

recovered in the so-called “heat pump mode”. This consists of increasing the discharge pressure of the MT
compressors to recover heat at higher temperatures. When the system performs a transcritical cycle the
COP heat recovery is particularly high, thanks to the properties of the refrigerant. f
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The most common COz2 refrigeration system installed in supermarkets is a transcritical booster system. In
these systems the heat recovered can cover both tap water and space heating demand. The heat is
recovered in the so-called “heat pump mode”. This consists of increasing the discharge pressure of the MT
compressors to recover heat at higher temperatures. When the system performs a transcritical cycle the
COP heat recovery is particularly high, thanks to the properties of the refrigerant.
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The most common COz2 refrigeration system installed in supermarkets is a transcritical booster system. In
these systems the heat recovered can cover both tap water and space heating demand. The heat is
recovered in the so-called “heat pump mode”. This consists of increasing the discharge pressure of the MT
compressors to recover heat at higher temperatures. When the system performs a transcritical cycle the
COP heat recovery is particularly high, thanks to the properties of the refrigerant.
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The most common COz2 refrigeration system installed in supermarkets is a transcritical booster system. In
these systems the heat recovered can cover both tap water and space heating demand. The heat is
recovered in the so-called “heat pump mode”. This consists of increasing the discharge pressure of the MT
compressors to recover heat at higher temperatures. When the system performs a transcritical cycle the
COP heat recovery is particularly high, thanks to the properties of the refrigerant.

Introduction Field Measurements Techno-economic Assessment Conclusions

7=\ : : : : : :
e U rOI I I I l l O n Techno-economic assessment of CO2 refrigeration systems with geothermal integration 8




Introduction - Supermarkets’ CO. Transcritical Booster System 'S EKA

Heat Recovery

'h‘ ‘}'\‘\\“::}}‘i{‘:‘}‘}“ I

Outdoor

[ AR <
.."252.& 530

ol
W T o
-\\_?"\‘k\‘%"‘

Dl

Pressure [Bar]

Cabinets

10.00
a.00
8.00

.00
6.00

60 80 100

120 140 160 130 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 360 380 600 620
Enthalpy [kIkz]

The most common COz2 refrigeration system installed in supermarkets is a transcritical booster system. In
these systems the heat recovered can cover both tap water and space heating demand. The heat is
recovered in the so-called “heat pump mode”. This consists of increasing the discharge pressure of the MT
compressors to recover heat at higher temperatures. When the system performs a transcritical cycle the
COP heat recovery is particularly high, thanks to the properties of the refrigerant.
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The most common COz refrigeration system installed in supermarkets is a transcritical booster system. In
these systems the heat recovered can cover both tap water and space heating demand. The heat is
recovered in the so-called “heat pump mode”. This consists of increasing the discharge pressure of the MT
compressors to recover heat at higher temperatures. When the system performs a transcritical cycle the
COP heat recovery is particularly high, thanks to the properties of the refrigerant.
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In the coldest period of the year, when the heat recovered from cabinets and freezers
. . . . Geothermal - -
cannot cover the heating demand, heat is extracted from the geothermal storage. Since in boreholes
summer, the ground is colder than the outdoor air, the geothermal storage is “re-charged”
sub-cooling the refrigerant. Parallel compressors are used to extract heat from the ground.
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cannot cover the heating demand, heat is extracted from the geothermal storage. Since in boreholes
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In the coldest period of the year, when the heat recovered from cabinets and freezers

. . . . Geothermal - -
cannot cover the heating demand, heat is extracted from the geothermal storage. Since in boreholes
summer, the ground is colder than the outdoor air, the geothermal storage is “re-charged”
sub-cooling the refrigerant. Parallel compressors are used to extract heat from the ground.
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Field Measurements — Cooling Demands

Cooling load averaged on the outdoor temperature
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The typical cooling demand of the cabinets in a supermarket increases when the heating period f
ends. This is due to a rise in indoor absolute humidity which is translated into a more frequent

defrosting in the cabinets. The cooling demand of the freezers is more stable since there is less
air exchange with the supermarket’s indoor environment
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Field Measurements — Heat Recovery

Space Heating provided averaged on the outdoor temperature
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Field Measurements — coP Heat Recovery

COP Heat Recovery as a function of outdoor temperature
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Field Measurements — coP Heat Recovery

COP Heat Recovery as a function of HRR

@ COP Heat Recovery (system as a whole)
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Field Measurements — coP Heat Recovery

Heat Recovery COP

COP Heat Recovery as a function of HRR
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When the COP geothermal extraction and total COP heat recovery overlaps
it means that geothermal heat pump function is working in steady
conditions. This happens only during the peaks of heating demand. In
other words, the parallel compressors are forced to work in start-and-stop for

low values of HRR.
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Field Measurements — Sub-cooling

Great Sub-cooling effect
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Model validation - through power meters readings 'S EKA

Model Results vs Field Measurements — Error £7.5% A model representing the system was built to simulate the effect of
potential improvements and different sizes of the geothermal storage.
@ Average Power Consumption from power meters @ Average Power Consumption Calculated . . .
& P P & P The model was validated comparing the expected power consumption
and the readings from the power meter installed in the machine room.
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How to size a geothermal storage for this application?
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' - temperature of the secondary refrigerant which in turns influences the
Geothermal — amount of heat extracted (efficiency of the heat pump function) or
boreholes injected (capability to sub-cool the CO2). This means that the techno-
economic assessment needs to be solved through an iterative process!
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Techno-economic assessment 'S EKA

Modelling Output - Ground Load
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The ground load represents the amount of heat extracted from or injected
into the ground in one year.

The ground is extremely unbalanced. This means the amount of heat

injected in summer is much more than the heat injected in winter. This
increases the necessary size of the storage reducing its cost-effectiveness.
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Techno-economic assessment

Modelling Output - Ground Load
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+ into the ground in one year.

Addtional Investment Cost Savings

The ground is extremely unbalanced. This means the amount of heat
injected in summer is much more than the heat injected in winter. This
increases the necessary size of the storage reducing its cost-effectiveness.
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Techno-economic assessment

-ANPV = ACAPEX 4+ AOPEX
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Present Value of the Present Value of the Operational
Addtional Investment Cost + Savings

The present value of the operational savings represents the amount that
the supermarket should be willing to pay per meter of storage, taking into
account only the operational savings. This does not take into account
a potential difference in the CAPEX.
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The ground load represents the amount of heat extracted from or injected
into the ground in one year.

The ground is extremely unbalanced. This means the amount of heat

injected in summer is much more than the heat injected in winter. This
increases the necessary size of the storage reducing its cost-effectiveness.
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Techno-economic assessment

Present Value of the Operational Savings
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The present value of the operational savings represents the amount that
the supermarket should be willing to pay per meter of storage, taking into
account only the operational savings. This does not take into account
a potential difference in the CAPEX.
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The ground load represents the amount of heat extracted from or injected
into the ground in one year.

The ground is extremely unbalanced. This means the amount of heat
injected in summer is much more than the heat injected in winter. This
increases the necessary size of the storage reducing its cost-effectiveness.

Moreover, also the power peaks of heat injected (in this application)
are one of the parameters driving the size of the storage.
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Techno-economic assessment

Present Value of the Operational Savings
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The present value of the operational savings represents the amount that
the supermarket should be willing to pay per meter of storage, taking into
account only the operational savings. This does not take into account
a potential difference in the CAPEX.
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The ground load represents the amount of heat extracted from or injected
into the ground in one year.

The ground is extremely unbalanced. This means the amount of heat
injected in summer is much more than the heat injected in winter. This
increases the necessary size of the storage reducing its cost-effectiveness.

Moreover, also the power peaks of heat injected (in this application)
are one of the parameters driving the size of the storage.
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Techno-economic assessment

Present Value of the Operational Savings
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The present value of the operational savings represents the amount that
the supermarket should be willing to pay per meter of storage, taking into
account only the operational savings. This does not take into account
a potential difference in the CAPEX.
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The ground load represents the amount of heat extracted from or injected
into the ground in one year.

The ground is extremely unbalanced. This means the amount of heat
injected in summer is much more than the heat injected in winter. This
increases the necessary size of the storage reducing its cost-effectiveness.

Moreover, also the power peaks of heat injected (in this application)
are one of the parameters driving the size of the storage.
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Techno-economic assessment
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The present value of the operational savings represents the amount that
the supermarket should be willing to pay per meter of storage, taking into
account only the operational savings. This does not take into account
a potential difference in the CAPEX.
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The ground load represents the amount of heat extracted from or injected
into the ground in one year.
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Total Length [m] The ground is extremely unbalanced. This means the amount of heat
injected in summer is much more than the heat injected in winter. This
increases the necessary size of the storage reducing its cost-effectiveness.

Moreover, also the power peaks of heat injected (in this application)
are one of the parameters driving the size of the storage.
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Techno-economic assessment

Optimizing the cost-effectiveness reducing design capacity -
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The present value of the operational savings represents the amount that
the supermarket should be willing to pay per meter of storage, taking into
account only the operational savings. This does not take into account
a potential difference in the CAPEX.
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Techno-economic assessment

Optimizing the cost-effectiveness reducing design capacity -
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The present value of the operational savings represents the amount that
the supermarket should be willing to pay per meter of storage, taking into
account only the operational savings. This does not take into account
a potential difference in the CAPEX.
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Sensitivity Analysis — Supermarket size 'S EKA

Present Value of the Operational Saving — Size Variation
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Sensitivity Analysis — Climate zone

Present Value of the Operational Saving - Climate Zone Variation
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Sensitivity Analysis - Heat Recovery Ratio

Present Value of the Operational Saving - Variation of HRR
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Conclusion 'S EKA

 The COP heat recovery can compete with the most modern heat pumps

« The operational savings only do not pay back the installation cost. There must be savings on the
CAPEX when comparing alternatives for satisfying the peaks of heating demand.

« The average HRR is the parameter affecting the cost-effectiveness the most
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Conclusion 'S EKA

 The COP heat recovery can compete with the most modern heat pumps

« The operational savings only do not pay back the installation cost. There must be savings on the
CAPEX when comparing alternatives for satisfying the peaks of heating demand.

 The average HRR is the parameter affecting the cost-effectiveness the most

Future Work:

» Is it possible and profitable to use these systems for exporting heat to district heating networks in power-to-heat
applications?

» Is it cost-effective to use air-to-CO2 load evaporators instead of a geothermal integration?
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